

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014

Section A

Q.1		D			[1]
Q.2		A			[1]
Q.3	(a)	An electron formed when a neutron changes into a proton / an electron emitted by the nucleus			[1]
	(b)	³² S			[1]
	(c) Time taken for half of the atoms in a radioisotope to decay similar)			o decay (or	[1]
	(d)	42 days			[1]
Q.4	Q.4 Combustion of C and $H_2 = (2 \times -394) + (3 \times -286)$ = -1646 kJ mol ⁻¹ (1)			(1)	
		ΔH = -1646 - (-1560) = -86 kJ n	nol ⁻¹	(1)	[2]
Q.5		Ag S Mass 1.08 0.16 A _r 108 32 Moles 0.01 0.005	(1)		
		2 1 Formula = Ag ₂ S	(1)		[2]

Total Section A [10]

Section B

Q.6 (a) (i)
$$\mathbf{B}$$
 is ${}^{37}\text{Cl}^+$ (1) \mathbf{C} is $({}^{35}\text{Cl} - {}^{35}\text{Cl})^+$ (1) [2]

(ii)
$$C = 54$$
, $E = 6$ (1) Ratio of $C:E$ is 9:1 (1) [2]

(iii) Ratio of
$${}^{35}\text{Cl}:{}^{37}\text{Cl}$$
 is 3:1 (1) Ratio of ${}^{35}\text{Cl} - {}^{35}\text{Cl}:{}^{37}\text{Cl} - {}^{37}\text{Cl}$ is 3:1 × 3:1 = 9:1 (1)

or

Probability of
$$^{35}\text{Cl} - ^{35}\text{Cl}$$
 is $^{3}\!\!4 \times ^{3}\!\!4 = 9/16$ and $^{37}\text{Cl} - ^{37}\text{Cl}$ is $^{1}\!\!4 \times ^{1}\!\!4 = 1/16$ (1) [2]

(b)
$$A_r = \frac{(79 \times 50.69) + (81 \times 49.31)}{100}$$
 (1)

$$A_{\rm r} = 79.99$$
 (1)

Total [8]

Q.7	(a)		Use weighing scales to weigh the metal oxide (1) Use measuring cylinder to pour hydrogen peroxide solution and water into a conical flask (1) Immerse flask in water bath at 35 °C (1) Add oxide to flask and connect flask to gas syringe (1) Measure volume of oxygen every minute for 10 minutes / at regular time intervals (1)	
			(any 4 of above, credit possible from labelled diagram)	[4]
	(b)		Oxide A because reaction is faster	[1]
	(c)	(i)	18 cm ³	[1]
		(ii)	10 cm ³	[1]
	(d)		Concentration of hydrogen peroxide has decreased (1) reaction rate decreases / fewer successful collisions (1)	[2]
	(e)		All the hydrogen peroxide has decomposed / the same quantity of hydrogen peroxide was used	[1]
	(f)		25 cm ³	[1]
	(g)		Reaction will take less time (1) Reactants collide with more (kinetic) energy (1) More molecules have the required activation energy (1)	[3]
			QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter	[1]

Total [15]

Q.8	(a)	Electrons within atoms occupy fixed energy levels increasing energy / nitrogen has electrons in two s 1s ² 2s ² 2p ³		s of (1) (1)	
		Electrons occupy atomic orbitals within these shells / The first shell in nitrogen has s orbitals and the second shell s and p orbitals (1)			
		A maximum of two electrons can occupy any orbital Each s orbital in nitrogen contains two electrons	al / (1)		
		Each with opposite spins	(1)		
		Orbitals of the same type are grouped together as a sub-shell / There are three p orbitals in nitrogen's p sub-shell (1)			
		Each orbital in a sub-shell will fill with one electron starts / In nitrogen's p sub-shell each orbital contai electron		oairing	
		(configuration mark + any 3 of above)			[4]
		QWC The information is organised clearly and cousing specialist vocabulary where appropriate	pherently	' ,	[1]
	(b)	Atomic spectrum of hydrogen is a series of lines (1 that get closer as their frequency increases (1) (credit possible from labelled diagram))		
		Lines arise from atom / electrons being excited by energy (1) electron jumping up to a higher energy level (1) falling back down and emitting energy (in the form electromagnetic radiation) (1) to the n = 2 level (1) (any three points for maximum 3 marks)		ng	
		Since lines are discrete energy levels must have fi Since energy emitted is equal to the difference bet energy levels, ΔE is a fixed quantity or quantum			[6]

(c)	(i)	It has greater nuclear charge (1) but little / no extra shielding (1)		[2]
	(ii)	In Be less shielding of outer electron outweighs smaller nuclear charge	(1) (1)	
		or		
		Be outer electron closer to nucleus Be has greater effective nuclear charge	(1) (1)	[2]
	(iii)	I. Too much energy required to form B ³⁺ ion		[1]
		$II.\;K^{^{+}}(g)\;\;\rightarrow\;\;K^{2^{+}}(g)\;\;+\;\;e^{^{-}}$		[1]
		III. Value of 1 st and 3 rd I.E. will be higher Value of 2 nd I.E. will be smaller (accept large jump in I.E. value would be belectrons for 1 mark)	(1) (1) petween 2 nd and 3 rd	[2]

Total [19]

Q.9	 (a) Enthalpy change when one mole of a compound is formed from its (constituent) elements (1) in their standard states / under standard conditions (1) 			[2]	
	(b)	(i)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$. ,	[1]
		(ii)	-242 = 436 + 248 - 2(O—H) 2(O—H) = 926	(1)	
			$O - H = 463 \text{ kJ mol}^{-1}$	(1)	[2]
	(c) (i) (ii)		I. Burning hydrogen will not produce CO ₂ (or SO ₂) as pollutants	[1]
			II. Hydrogen is very flammable, storing as MgH_2 is safer / MgH_2 is solid therefore volume occupied by given amount of hydrogen is less		[1]
			If the MgH ₂ is not kept dry, hydrogen will be could be a potential explosion	e formed and there	[1]
		(iii)	Moles $MgH_2 = \frac{70000}{26.32} = 2659.6 (2660)$	(1)	
			Moles H ₂ = 5319.2 (5320)	(1)	
			Volume $H_2 = 1.28 \times 10^5 \text{ dm}^3$	(1)	[3]
	(d) (i)		An increase in temperature would decrease increase in pressure would increase the yield	•	[1]
		(ii)	Forward reaction is exothermic so equilibritemperature is increased	um shifts to the left as (1)	
			More gaseous moles on the l.h.s. so equilibright as pressure is increased	brium shifts to the (1)	[2]
	(e)		Lower temperatures can be used Energy costs saved More product can be made in a given time	(1) (1) (so more can be sold) (1)	
			Enable reactions to take place that would be otherwise Less fossil fuels burned to provide energy	pe impossible (1)	
			(any 3 of above)	(1)	[3]
			QWC Legibility of text; accuracy of spelling grammar, clarity of meaning	g, punctuation and	[1]

Total [18]

Q.10 (a) Moles NaCl =
$$\frac{900}{58.5}$$
 = 15.38 (1) Moles Na₂CO₃ = 7.69 (1) Mass Na₂CO₃ = 7.69 × 106 = 815(.4) g (1) [3] (b) (i) 2.52 g [1] (ii) Moles Na₂CO₃ = 0.02 (1) Moles H₂O = 0.14 (1) x = 7 (1) [2] (c) (i) Moles = 0.5 × 0.018 = 0.009 [1] (ii) 0.0045 × 106 = 0.477 [1]

(iv) % = 0.477/0.55 = 86.7 %

Total [10]

[1]

Total Section B [70]